Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579712

RESUMEN

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Asunto(s)
Células Epiteliales Alveolares , Linaje de la Célula , Pulmón , Regeneración , Células Madre , Animales , Ratones , Células Madre/metabolismo , Células Madre/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Pulmón/citología , Pulmón/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Lesión Pulmonar/patología , Diferenciación Celular , Transducción de Señal , Ratones Endogámicos C57BL
2.
Cell Stem Cell ; 31(5): 657-675.e8, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642558

RESUMEN

Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Células Cultivadas , Transcriptoma/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
3.
Am J Respir Cell Mol Biol ; 70(5): 339-350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38207121

RESUMEN

In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.


Asunto(s)
Células Epiteliales Alveolares , Humanos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/ultraestructura , Diferenciación Celular , Transcriptoma , Células Cultivadas , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Uniones Estrechas/metabolismo
4.
Nature ; 620(7975): 890-897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558881

RESUMEN

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Linaje de la Célula , Pulmón , Mitocondrias , Estrés Fisiológico , Animales , Ratones , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Mitocondrias/enzimología , Mitocondrias/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Protones , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Expresión Génica de una Sola Célula
5.
Nature ; 619(7971): 851-859, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468633

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Neoplasias Pulmonares , Pulmón , Proteína p53 Supresora de Tumor , Animales , Ratones , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/prevención & control , Ratones Noqueados , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Alelos , Perfilación de la Expresión Génica , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Progresión de la Enfermedad , Linaje de la Célula , Regeneración , Autorrenovación de las Células
6.
Proc Natl Acad Sci U S A ; 119(32): e2201899119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914155

RESUMEN

The cellular and molecular components required for the formation of premetastatic niche (PMN) to promote lung metastasis need to be further investigated. Lung epithelial cells have been reported to exhibit immunomodulatory roles in lung homeostasis and also to mediate immunosuppressive PMN formation in lung metastasis. Here, by single-cell sequencing, we identified a tumor-polarized subpopulation of alveolar type 2 (AT2) epithelial cells with increased expression of glutathione peroxidase 3 (GPX3) and high production of interleukin (IL)-10 in the PMN. IL-10-producing GPX3+ AT2 cells inhibited CD4+ T cell proliferation but enhanced regulatory T cell generation. Mechanistically, tumor exosome-inducing GPX3 expression is required for GPX3+ AT2 cells to preferentially produce IL-10 by stabilizing hypoxia-inducible factor 1 (HIF-1α) and promoting HIF-1α-induced IL-10 production. Accordingly, conditional knockout of GPX3 in AT2 cells suppressed lung metastasis in spontaneous metastatic models. Together, our findings reveal a role of tumor-polarized GPX3+ AT2 cells in promoting lung PMN formation, adding insights into immune evasion in lung metastasis and providing potential targets for the intervention of tumor metastasis.


Asunto(s)
Células Epiteliales Alveolares , Interleucina-10 , Neoplasias Pulmonares , Células Epiteliales Alveolares/citología , Linfocitos T CD4-Positivos/citología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmón/citología , Pulmón/patología , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Escape del Tumor
7.
Cell Mol Life Sci ; 79(3): 151, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212819

RESUMEN

Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER-mito cross talk and tethering under conditions of IPF. We here demonstrate that ER-mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is-at least in part-due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2-TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Capsaicina/farmacología , Línea Celular , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/metabolismo , Ratones , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteínas de Transporte Vesicular/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
8.
Chin J Traumatol ; 25(3): 138-144, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35078688

RESUMEN

PURPOSE: The incidence of acute lung injury (ALI) in severe trauma patients is 48% and the mortality rate following acute respiratory distress syndrome evolved from ALI is up to 68.5%. Alveolar epithelial type 1 cells (AEC1s) and type 2 cells (AEC2s) are the key cells in the repair of injured lungs as well as fetal lung development. Therefore, the purification and culture of AEC1s and AEC2s play an important role in the research of repair and regeneration of lung tissue. METHODS: Sprague-Dawley rats (3-4 weeks, 120-150 g) were purchased for experiment. Dispase and DNase I were jointly used to digest lung tissue to obtain a single-cell suspension of whole lung cells, and then magnetic bead cell sorting was performed to isolate T1α positive cells as AEC1s from the single-cell suspension by using polyclonal rabbit anti-T1a (a specific AEC1s membrane protein) antibodies combined with anti-rabbit IgG microbeads. Afterwards, alveolar epithelial cell membrane marker protein EpCAM was designed as a key label to sort AEC2s from the remaining T1α-neg cells by another positive immunomagnetic selection using monoclonal mouse anti-EpCAM antibodies and anti-mouse IgG microbeads. Cell purity was identified by immunofluorescence staining and flow cytometry. RESULTS: The purity of AEC1s and AEC2s was 88.3% ± 3.8% and 92.6% ± 2.7%, respectively. The cell growth was observed as follows: AEC1s stretched within the 12-16 h, but the cells proliferated slowly; while AEC2s began to stretch after 24 h and proliferated rapidly from the 2nd day and began to differentiate after 3 days. CONCLUSION: AEC1s and AEC2s sorted by this method have high purity and good viability. Therefore, our method provides a new approach for the isolation and culture of AEC1s and AEC2s as well as a new strategy for the research of lung repair and regeneration.


Asunto(s)
Células Epiteliales Alveolares , Técnicas de Cultivo de Célula , Separación Celular , Células Epiteliales Alveolares/citología , Animales , Separación Celular/métodos , Inmunoglobulina G/metabolismo , Pulmón , Fenómenos Magnéticos , Ratas , Ratas Sprague-Dawley
9.
Bioengineered ; 13(1): 242-252, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34898379

RESUMEN

Oxygen therapy and mechanical ventilation are widely used to treat and manage neonatal emergencies in critically ill newborns. However, they are often associated with adverse effects and result in conditions such as chronic lung disease and bronchopulmonary dysplasia. Hence, aclear understanding of the mechanisms underlying hyperoxia-induced lung damage is crucial in order to mitigate the side effects of oxygen-based therapy. Here, we have established an in vitro model of hyperoxia-induced lung damage in type II alveolar epithelial cells (AECIIs) and delineated the molecular basis of oxygen therapy-induced impaired alveolar development. Thus, AECIIs were exposed to a hyperoxic environment and their cell viability, cell cycle progression, apoptosis, mitochondrial integrity and dynamics, and energy metabolism were assessed. The results showed that hyperoxia has no significant effect as an inhibitor of SMAD3 and ERK1/2 in AECIIs, but leads to significant inhibition of cell viability. Further, hyperoxia was found to promote AECII apoptosis and mitochondrial, whereas chemical inhibition of SMAD3 or ERK1/2 further exacerbated the detrimental effects of hyperoxia in AECIIs. Overall, these findings presented herein demonstrate the critical role of SMAD/ERK signaling in the regulation of AECII behavior in varying oxygen environments. Thus, this study offers novel insights for the prevention of neonatal lung dysfunction in premature infants.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/citología , Mitocondrias/metabolismo , Proteína smad3/metabolismo , Lesión Pulmonar Aguda/etiología , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis , Hipoxia de la Célula , Proliferación Celular , Metabolismo Energético , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Ratas
10.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931663

RESUMEN

Alveologenesis requires the coordinated modulation of the epithelial and mesenchymal compartments to generate mature alveolar saccules for efficient gas exchange. However, the molecular mechanisms underlying the epithelial-mesenchymal interaction during alveologenesis are poorly understood. Here, we report that Wnts produced by epithelial cells are crucial for neonatal alveologenesis. Deletion of the Wnt chaperone protein Wntless homolog (Wls) disrupts alveolar formation, resulting in enlarged saccules in Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp mutants. Although commitment of the alveolar epithelium is unaffected, α-SMA+ mesenchymal cells persist in the alveoli, accompanied by increased collagen deposition, and mutants exhibit exacerbated fibrosis following bleomycin challenge. Notably, α-SMA+ cells include a significant number of endothelial cells resembling endothelial to mesenchymal transition (EndMT), which is also present in Ager-CreER; Wlsloxp/loxp mutants following early postnatal Wls deletion. These findings provide initial evidence that epithelial-derived Wnts are crucial for the differentiation of the surrounding mesenchyme during early postnatal alveologenesis.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Actinas/genética , Actinas/metabolismo , Células Epiteliales Alveolares/citología , Animales , Células Cultivadas , Transición Epitelial-Mesenquimal , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genética
11.
Bioengineered ; 13(1): 155-163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949154

RESUMEN

Apoptosis of alveolar epithelial cells during acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical pathological event that seriously endangers the health of patients. Suppressing apoptosis of alveolar epithelial cells was shown to alleviate functional damage of lung, and modulator of the reactive oxygen species (ROS)-induced apoptosis becomes a promising approach to the ALI therapy. Previous little studies showed that DHCR24 possessed anti-oxidative and anti-apoptotic property in ALI. Thus, H2O2 was utilized to mimic oxidative damage in vitro in alveolar epithelial cell line A549 in the present study. Our results exhibited that H2O2 treatment of A549 cells reduced the level of SOD and increased the level of ROS. Moreover, H2O2 inhibited Bcl-2 expression in A549 cells, but increased Bax and the activity of Caspase-3. In addition, the apoptosis rate in the H2O2 treatment group also increased significantly. And the expression of 24-dehydrocholesterol reductase (DHCR24) was markedly reduced in the H2O2 treatment group. Overexpression of DHCR24 can remarkably inhibit H2O2-induced oxidative stress and apoptosis. We found that overexpression of DHCR24 increased the phosphorylation level of PI3K and AKT, however, the PI3K inhibitor LY294002 (LY) eliminated the protective effect of DHCR24 in ALI. DHCR24 was down-regulated in H2O2-induced ALI, and overexpression of DHCR24 could inhibit H2O2-induced oxidative stress and apoptosis of A549 cells by activating the Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) signaling pathway. The above exhibited a protective effect of DHCR24 on alveolar epithelial cells exposed to oxidative stress-mediated apoptosis and provided a novel therapeutic method for ALI.


Asunto(s)
Células Epiteliales Alveolares/citología , Regulación hacia Abajo , Peróxido de Hidrógeno/efectos adversos , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células A549 , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Apoptosis , Cromonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Humanos , Morfolinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Microbiol Spectr ; 9(3): e0073521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935423

RESUMEN

SARS-CoV-2 infection can cause compromised respiratory function and thrombotic events. SARS-CoV-2 binds to and mediates downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. Theoretically, diminished enzymatic activity of ACE2 may result in increased concentrations of pro-inflammatory molecules, angiotensin II, and Bradykinin, contributing to SARS-CoV-2 pathology. Using immunofluorescence microscopy of lung tissues from uninfected, and SARS-CoV-2 infected individuals, we find evidence that ACE2 is highly expressed in human pulmonary alveolar epithelial cells and significantly reduced along the alveolar lining of SARS-CoV-2 infected lungs. Ex vivo analyses of primary human cells, indicated that ACE2 is readily detected in pulmonary alveolar epithelial and aortic endothelial cells. Exposure of these cells to spike protein of SARS-CoV-2 was sufficient to reduce ACE2 expression. Moreover, exposure of endothelial cells to spike protein-induced dysfunction, caspase activation, and apoptosis. Exposure of endothelial cells to bradykinin caused calcium signaling and endothelial dysfunction (increased expression of von Willibrand Factor and decreased expression of Krüppel-like Factor 2) but did not adversely affect viability in primary human aortic endothelial cells. Computer-assisted analyses of molecules with potential to bind bradykinin receptor B2 (BKRB2), suggested a potential role for aspirin as a BK antagonist. When tested in our in vitro model, we found evidence that aspirin can blunt cell signaling and endothelial dysfunction caused by bradykinin in these cells. Interference with interactions of spike protein or bradykinin with endothelial cells may serve as an important strategy to stabilize microvascular homeostasis in COVID-19 disease. IMPORTANCE SARS-CoV-2 causes complex effects on microvascular homeostasis that potentially contribute to organ dysfunction and coagulopathies. SARS-CoV-2 binds to, and causes downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. It is thought that reduced ACE2 enzymatic activity can contribute to inflammation and pathology in the lung. Our studies add to this understanding by providing evidence that spike protein alone can mediate adverse effects on vascular cells. Understanding these mechanisms of pathogenesis may provide rationale for interventions that could limit microvascular events associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19/fisiopatología , Células Endoteliales/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aorta/citología , Aorta/metabolismo , Aorta/virología , Apoptosis , Bradiquinina/química , Bradiquinina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Homeostasis , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/virología , Microcirculación , Receptores de Bradiquinina/química , Receptores de Bradiquinina/genética , Receptores de Bradiquinina/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
13.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(6): 577-583, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34821087

RESUMEN

Objective: To study the role of Notch-1/Twist-1 axis in the process of epithelial-mesenchymal transition (EMT) of type II alveolar epithelial cells in pulmonary fibrosis (PF) and hope to provide a new theoretical basis for the pathogenesis of PF. Methods: Thirty rats were randomly divided into control group and bleomycin (BLM) group, 15 rats in each group. The PF rat model was induced by intratracheal injection of BLM (7 500 U/kg). Excised inferior lobe of left lung was fixed in 10% formalin for HE staining, Masson staining and transforming growth factor-beta 1 (TGF-ß1) immunohistochemistry staining after BLM injection for 28 days. The cultured type II alveolar epithelial cells (RLE-6TN) were divided into 4 groups (Control group, transforming growth factor-beta 1 (TGF-ß1) group, Notch-1 negative control siRNA (NC siRNA, 100 pmol/L) group and Notch-1 siRNA (100 pmol/L) group), each group was established nine holes. The cells were treated with TGF-ß1 (5.0 ng/ml) for 24 h following NC siRNA or Notch-1 siRNA for 48 h. The mRNA and (or) proteins levels of TGF-ß1, collagen I, collagen III, E-Cadherin, zonula occludens-1 (ZO-1), Vimentin, E-Cadherin, Notch-1, Notch-1 intracellular domain (NICD), Hes-1 and Twist-1 were detected in lung tissue and type II alveolar epithelial cells. Results: In vivo, compared with the control group, the alveolar atrophy, collapse and fusion occurred, alveolar septum widened significantly, and a large number of inflammatory cells infiltrated in the pulmonary interstitial of the rats in the BLM group. And compared with control group, BLM obviously increased collagen deposition and collagen I and collagen III expressions, while the expressions of ZO-1 and E-cadherin were decreased, and the expressions of Vimentin and N-cadherin were increased, and concomitantly with increasing Notch-1, NICD, Hes-1 and Twist-1 expression in lung tissues of rats (P<0.01). In vitro, compared with control group, TGF-ß1 treatment obviously induced collagen I, collagen III, Notch-1, NICD, Hes-1 and Twist-1 expressions, and the expressions of E-cadherin and ZO-1 were decreased and the expressions of Vimentin and N-cadherin were increased(P<0.01). Compared with TGF-ß1 group, Notch-1 siRNA treatment significantly inhibited the expressions of Notch-1, NICD, Hes-1 and Twist-1, and the expressions of E-cadherin and ZO-1 were increased and the expressions of Vimentin and N-cadherin were decreased, and also obviously reduced the expressions of collagen I and collagen III induced by TGF-ß1 (P<0.05 or P<0.01). Conclusion: Notch-1/Twist-1 axis is involved in the EMT process of type II alveolar epithelial cells, suggesting that Notch-1/Twist-1 signaling may be involved in the development of pulmonary fibrosis.


Asunto(s)
Células Epiteliales Alveolares/citología , Transición Epitelial-Mesenquimal , Fibrosis Pulmonar , Receptor Notch1/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Bleomicina , Pulmón , Fibrosis Pulmonar/inducido químicamente , Ratas , Transducción de Señal , Factor de Crecimiento Transformador beta1
14.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1072-L1088, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612064

RESUMEN

Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Modelos Biológicos , Mucosa Respiratoria/fisiología , Enfermedades Respiratorias/fisiopatología , Células Epiteliales Alveolares/citología , Animales , Evaluación Preclínica de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Mucosa Respiratoria/citología , Ingeniería de Tejidos
15.
PLoS One ; 16(9): e0248798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570783

RESUMEN

The epithelial tissues of the distal lung are continuously exposed to inhaled air, and are of research interest in studying respiratory exposure to both hazardous and therapeutic materials. Pharmaco-toxicological research depends on the development of sophisticated models of the alveolar epithelium, which better represent the different cell types present in the native lung and interactions between them. We developed an air-liquid interface (ALI) model of the alveolar epithelium which incorporates cell lines which bear features of type I (hAELVi) and type II (NCI-H441) epithelial cells. We compared morphology of single cells and the structure of cell layers of the two lines using light and electron microscopy. Working both in monotypic cultures and cocultures, we measured barrier function by trans-epithelial electrical resistance (TEER), and demonstrated that barrier properties can be maintained for 30 days. We created a mathematical model of TEER development over time based on these data in order to make inferences about the interactions occurring in these culture systems. We assessed expression of a panel of relevant genes that play important roles in barrier function and differentiation. The coculture model was observed to form a stable barrier akin to that seen in hAELVi, while expressing surfactant protein C, and having a profile of expression of claudins and aquaporins appropriate for the distal lung. We described cavities which arise within stratified cell layers in NCI-H441 and cocultured cells, and present evidence that these cavities represent an aberrant apical surface. In summary, our results support the coculture of these two cell lines to produce a model which better represents the breadth of functions seen in native alveolar epithelium.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/fisiología , Técnicas de Cocultivo/métodos , Transportadoras de Casetes de Unión a ATP/metabolismo , Caveolas/fisiología , Línea Celular , Claudinas/genética , Claudinas/metabolismo , Impedancia Eléctrica , Expresión Génica , Humanos , Surfactantes Pulmonares/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L814-L826, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431413

RESUMEN

Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation toward AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation toward AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/fisiología , Mecanotransducción Celular/fisiología , Alveolos Pulmonares/embriología , Quinasas Asociadas a rho/metabolismo , Células Epiteliales Alveolares/citología , Animales , Recuento de Células , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Ratones , Microscopía Electrónica de Rastreo , Organogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP
17.
FASEB J ; 35(9): e21853, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416038

RESUMEN

We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/microbiología , Pulmón/microbiología , Pulmón/patología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/microbiología , Adolescente , Adulto , Anciano , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Carcinógenos , Transformación Celular Neoplásica/genética , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Mycobacterium tuberculosis/genética , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/patología , Factores de Riesgo , Tuberculosis Pulmonar/patología , Adulto Joven
18.
Toxicology ; 461: 152903, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34425168

RESUMEN

Several studies using bleomycin (BLM)-induced lung injury rat model revealed that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Conversely, microRNAs (miRNAs) are considered as useful markers of various diseases. In the present study, we aimed to characterize the EMT state through focusing on alveolar epithelial cells and identify the miRNAs that can be used as markers to predict pulmonary fibrosis using a BLM-induced lung injury rat model. Intratracheal administration of BLM increased hydroxyproline, a component of collagen, in lung tissues at day 14, but not at day 7. However, BLM induced EMT at day 7, which was accompanied with increased mRNA expression of α-smooth muscle actin, a representative EMT marker, in alveolar epithelium, thereby suggesting that EMT occurs prior to pulmonary fibrosis in alveolar epithelial cells. Using this rat model, the expression levels of several EMT-associated miRNAs were examined, and miR-222 was found to be upregulated in alveolar epithelial cells as well as bronchoalveolar lavage fluid from day 3. Our findings indicate that EMT in alveolar epithelial cells may occur before pulmonary fibrosis, and miR-222 may be used as a potential marker for early prediction of pulmonary fibrosis.


Asunto(s)
Bleomicina/toxicidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/toxicidad , Bleomicina/administración & dosificación , Lesión Pulmonar/genética , Lesión Pulmonar/fisiopatología , Masculino , MicroARNs/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
19.
EBioMedicine ; 69: 103463, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34224973

RESUMEN

BACKGROUND: Family with Sequence Similarity 13, Member A (FAM13A) gene has been consistently associated with COPD by Genome-wide association studies (GWAS). Our previous study demonstrated that FAM13A was mainly expressed in the lung epithelial progenitors including Club cells and alveolar type II epithelial (ATII) cells. Fam13a-/- mice were resistant to cigarette smoke (CS)-induced emphysema through promoting ß-catenin/Wnt activation. Given the important roles of ß-catenin/Wnt activation in alveolar regeneration during injury, it is unclear when and where FAM13A regulates the Wnt pathway, the requisite pathway for alveolar epithelial repair, in vivo during CS exposure in lung epithelial progenitors. METHODS: Fam13a+/+ or Fam13a-/- mice were crossed with TCF/Lef:H2B-GFP Wnt-signaling reporter mouse line to indicate ß-catenin/Wnt-activated cells labeled with GFP followed by acute (1 month) or chronic (7 months) CS exposure. Fluorescence-activated flow cytometry analysis, immunofluorescence and organoid culture system were performed to identify the ß-catenin/Wnt-activated cells in Fam13a+/+ or Fam13a-/- mice exposed to CS. Fam13a;SftpcCreERT2;Rosa26RmTmG mouse line, where GFP labels ATII cells, was generated for alveolar organoid culture followed by analyses of organoid number, immunofluorescence and gene expression. Single cell RNA-seq data from COPD ever smokers and nonsmoker control lungs were further analyzed. FINDINGS: We found that FAM13A-deficiency significantly increased Wnt activation mainly in lung epithelial cells. Consistently, after long-term CS exposure in vivo, FAM13A deficiency bestows alveolar epithelial progenitor cells with enhanced proliferation and differentiation in the ex vivo organoid model. Importantly, expression of FAM13A is significantly increased in human COPD-derived ATII cells compared to healthy ATII cells as suggested by single cell RNA-sequencing data. INTERPRETATION: Our findings suggest that FAM13A-deficiency promotes the Wnt pathway-mediated ATII cell repair/regeneration, and thereby possibly mitigating CS-induced alveolar destruction. FUND: This project is funded by the National Institutes of Health of United States of America (NIH) grants R01HL127200, R01HL137927, R01HL148667 and R01HL147148 (XZ).


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Autorrenovación de las Células , Proteínas Activadoras de GTPasa/metabolismo , Enfisema Pulmonar/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt , Células Epiteliales Alveolares/citología , Animales , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfisema Pulmonar/etiología , Células Madre/citología , Células Madre/fisiología , Contaminación por Humo de Tabaco/efectos adversos
20.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203322

RESUMEN

BACKGROUND: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. METHODS: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. RESULTS: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. CONCLUSIONS: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.


Asunto(s)
MicroARNs/metabolismo , Mitocondrias/metabolismo , Células A549 , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA